문제 1
두 종류의 유전율
(\epsilon _1,\epsilon _2)
을 가진 유전체 경계면에 진전하가 존재하지 않을 때 성립하는 경계조건을 옳게 나타낸 것은? (단,
\theta _1, \theta _2
는 각각 유전체 경계면의 법선벡터와
E_1,E_2
가 이루는 각이다.)
1.
E_1sin\theta _1=E_2sin\theta _2,
D_1sin\theta _1=D_2sin\theta _2, \frac{tan\theta _1}{tan\theta _2}=\frac{\epsilon _2}{\epsilon _1}
2.
E_1cos\theta _1=E_2cos\theta _2,
D_1sin\theta _1=D_2sin\theta _2, \frac{tan\theta _1}{tan\theta _2}=\frac{\epsilon _2}{\epsilon _1}
3.
E_1sin\theta _1=E_2sin\theta _2,
D_1cos\theta _1=D_2cos\theta _2, \frac{tan\theta _1}{tan\theta _2}=\frac{\epsilon _1}{\epsilon _2}
4.
E_1cos\theta _1=E_2cos\theta _2,
D_1cos\theta _1=D_2cos\theta _2, \frac{tan\theta _1}{tan\theta _2}=\frac{\epsilon _1}{\epsilon _2}
💡 로그인하면 학습 진행률이 자동으로 저장되고, 북마크와 오답노트를 사용할 수 있습니다.
이전
다음